
Package: semgram (via r-universe)
October 17, 2024

Type Package

Title Extracting Semantic Motifs from Textual Data

Version 0.1.1

Description A framework for extracting semantic motifs around entities
in textual data. It implements an entity-centered semantic
grammar that distinguishes six classes of motifs: actions of an
entity, treatments of an entity, agents acting upon an entity,
patients acted upon by an entity, characterizations of an
entity, and possessions of an entity. Motifs are identified by
applying a set of extraction rules to a parsed text object that
includes part-of-speech tags and dependency annotations - such
as those generated by 'spacyr'. For further reference, see:
Stuhler (2022) <doi:10.1177/00491241221099551>.

URL https://github.com/omstuhler/semgram

License GPL-3

Encoding UTF-8

LazyData true

BugReports https://github.com/omstuhler/semgram/issues

RoxygenNote 7.1.2

Depends R (>= 3.5.3)

Imports data.table, rsyntax (>= 0.1.4), stringr

Author Oscar Stuhler [aut, cre]
(<https://orcid.org/0000-0001-7391-1743>)

Maintainer Oscar Stuhler <semgram.r@gmail.com>

Repository https://omstuhler.r-universe.dev

RemoteUrl https://github.com/omstuhler/semgram

RemoteRef HEAD

RemoteSha c572fcc8e3809dde37d119d953be37bc4673d61b

1

https://doi.org/10.1177/00491241221099551
https://github.com/omstuhler/semgram
https://github.com/omstuhler/semgram/issues
https://orcid.org/0000-0001-7391-1743

2 extract_motifs

Contents
extract_motifs . 2
semgram . 6

Index 7

extract_motifs Extract semantic motifs from parsed text object

Description

This function extracts semantic motifs from text. The input is a data.frame representing a parsed
text such as those returned by spacyr::spacy_parse(). The output is a list of data.frames containing
semantic motifs such as actions or characterizations of textual entities. For a detailed explanation,
see Stuhler (2022).

Usage

extract_motifs(
tokens,
entities = "*",
motif_classes = c("t", "a", "be", "H", "At", "aP"),
custom_cols,
fast = F,
parse_multi_token_entities = T,
extract = "lemma",
markup = F,
add_sentence = F,
add_paragraph = F,
verb_prep = F,
verb_prep_greedy = F,
be_entity = T,
get_aux_verbs = F,
aux_verb_markup = T,
pron_as_ap = F,
use_appos = T,
lowercase = F,
verbose = F

)

Arguments

tokens A tokens data.frame with predicted dependencies as generated, for instance, by
spacyr::spacy_parse(). Dependencies need to be in ClearNLP style. This tag set
is used by all English language models implemented in spaCy. Other languages
or dependency grammars are currently not supported.

extract_motifs 3

entities Specifies the core entities around which to extract motifs. This can be a single
character string or a vector of character strings. By default, multi-token strings
such as "Harry Potter" will be parsed and considered. Note that this parameter is
case-sensitive. It defaults to "*" in which case any token is treated as a potential
entity.

motif_classes A character vector specifying which motif classes should be considered in the
extraction. This can include "t" for treatments, "a" for actions, "be" for char-
acterizations, "H" for possessions, as well as "At" and "aP" for agent-treatment
and action-patient motifs respectively. By default, all motif classes are consid-
ered. Note, however, that runtime increases with the number of motif classes
considered.

custom_cols Generally, the columns in the tokens object should be labeled as follows: "doc_id",
"sentence_id", "token_id", "token", "lemma", "pos", "head_token_id" , "dep_rel".
If the columns in your tokens object are not labeled according to this scheme,
provide the matching column names to custom_cols in the corresponding order.

fast If set to TRUE, some of the more specific extraction rules are not applied. This
results in fewer extractions but faster run time. Defaults to FALSE.

parse_multi_token_entities

Should multi-token entities (e.g., "Harry Potter") be considered? Defaults to
TRUE. When using multi-token entities, it is crucial that tokens are separated
by a space character. Input should match the tokenized version in the tokens
object. For instance, hyphens are usually considered a token in tokenization, so
that "Claude Levi-Strauss" should be passed to the function as "Claude Levi -
Strauss".

extract Defines whether extracted motifs are represented in "lemma" or "token" form.
Defaults to "lemma" which reduces sparsity and is preferable for most purposes.

markup If TRUE, motifs will also be provided as collapsed markup tokens (e.g., "aP_ask_Harry").
Defaults to FALSE.

add_sentence If TRUE, the sentence for each motif is added to the extracted motif. Note that
this is done by pasting together the tokens of the sentence, so that the repre-
sentation might differ minimally from the original text. Nonetheless, this can
be helpful for validation and for a mode of analyses that switches between dis-
tant and close readings of the text. Defaults to FALSE. Note that setting this to
TRUE will noticeably increase runtime.

add_paragraph If TRUE, a pseudo-paragraph (the sentence the motif is contained in, as well as
ones immediately before and after it) for each motif is added to the extracted
motif. Defaults to FALSE. Setting this to TRUE will noticeably increase run-
time.

verb_prep If TRUE, prepositions that follow an action or treatment are added to the respec-
tive verb. For instance in "ENTITY believes in Sue." the action a_believe-in
and the action-patient motif aP_believe-in_Sue will be extracted; whereas oth-
erwise, only a_believe would be extracted. This is currently only implemented
for the most common syntactic patterns for action, action-patient, treatment, and
agent-treatment motifs (those also considered if fast is set to TRUE). Note that
the number of action motifs is unaffected by this parameter as action motifs
are extracted regardless of whether or not they have a preposition as dependent.

4 extract_motifs

However, the number of extracted action-patient, treatment, and agent-treatment
motifs will increase if the parameter is set to TRUE because the relation between
action and patient (as well as between treatment and ENTITY) is frequently me-
diated by a preposition. Note that setting this to TRUE will likely increase the
level of sparsity in subsequent analyses. Defaults to FALSE.

verb_prep_greedy

By default, assuming verb_prep is set to TRUE, only prepositions immedi-
ately following a verb are considered (e.g., "ENTITY believes in Sue." leads to
a_believe-in.) but more distant ones are disregarded (e.g., "ENTITY slammed
it on the table." leads to a_slam, not a_slam-on). This behavior can be changed
if verb_prep_greedy is set to TRUE. Note that this might result in some not im-
mediately intuitive action motifs (e.g., the action a_want-on as extracted from
"ENTITY want you on television!").

be_entity Should things that are linked to an entity via "being" (or one of its lemmas)
be considered as characterization motifs? For example, if we are extracting
characterizations in the sentence "my parents are ENTITY", should we extract
the characterization motif "be_parent"? Defaults to TRUE.

get_aux_verbs Should auxiliary verbs (e.g., can, could, may, must) be considered actions? De-
faults to FALSE.

aux_verb_markup

Should auxiliary verbs with "to" be marked up so that "going" in "going to eat"
becomes "going-to". Note that this will not affect cases of the sort "going to the
bar." This can be useful for analyses concerning modality. Defaults to TRUE.

pron_as_ap Should pronouns be considered agents and patients? Defaults to FALSE.

use_appos Should things linked to an entity via an appositional modifier be considered as
equivalent to the entity? For example, if we specify our entity to be "Peter" in
the sentence "My brother Peter left.", should "brother" be considered equivalent
to "Peter"? Only if use_appos = TRUE, we can extract "leaving" as action mo-
tif associated with Peter, as the subject associated with "leaving" is "brother".
Defaults to TRUE.

lowercase Should all tokens and lemmas be lowercased? Defaults to FALSE.

verbose Should progress be reported during execution? Defaults to FALSE.

Details

This is the main function for extracting semantic motifs around entities. Extraction is done by
applying a set of extraction rules to the parsed text object that includes part-of-speech tags and
dependency relations. Details on the scope of these rules, the theoretical reasoning behind them,
and the markup used for motifs can be found in Stuhler (2022). For a recent application, see Stuhler
(2021). The following is an abbreviated explanation of the motif classes from Stuhler (2022: 22-23).

Action motifs imply that an entity is doing something. The most straightforward example of this is
when the entity serves as a nominal subject of a verb ("ENTITY calls." - a_call). There are various
syntactic constructions, however, in which a verb is considered an action despite the entity not being
its nominal subject. This includes instances in which the entity is the conjunct of a nominal subject
("John and ENTITY called." - a_call), there are multiple verbs ("ENTITY calls and asks." - a_call,
a_ask), the entity serves as an appositional modifier of a nominal subject (My friend ENTITY

extract_motifs 5

called. - a_call), and passive constructions ("John was called by ENTITY." - a_call). All actions are
either lexical verbs or, if explicitly specified, auxiliary verbs.

Patient motifs are things that the entity of interest acts towards. They are usually objects of transitive
verbs that were identified as an entity’s action. These objects can be in accusative case ("ENTITY
asks John." - aP_ask_John) or in dative case if the verb is ditransitive ("ENTITY asks John a ques-
tion." - aP_ask_John, aP_ask_question). Any action motif can lead to multiple Patient motifs –
as any transitive verb can have multiple conjunct objects ("ENTITY calls John, Jane, and Steve."
- aP_call_John, aP_call_Jane, aP_call_Steve). Beyond objects, nominal passive subjects are also
considered patients ("John is asked by ENTITY." - aP_ask_John).

Treatment motifs imply that something is done to an entity of interest. This is the case when
the entity is the object of a transitive verb. The relationship between treatments and the entity
is analogous to that of actions and patients. The entity can function as accusative ("John calls
ENTITY" - t_call) or dative ("John gives ENTITY an apple." - t_give) object, as nominal passive
subject ("ENTITY was called." - t_call), or as conjunct of any of these ("John calls Peter and
ENTITY" - t_call).

Agent motifs are things that act towards the entity of interest via a treatment motif. In most cases,
agents are the nominal subject of a verb that has been identified as a treatment motif ("John calls
ENTITY." - t_call). However, agents need not take that position and can be conjuncts ("Peter
and John ask ENTITY." - At_Peter_ask, At_John_ask) or appositional modifiers ("My friend John
asked your brother ENTITY." - At_friend_ask, At_John_ask) of the nominal subject. Generally,
the relationship between agents and treatments is analogous to that of the entity and actions, so that
the transitive verb may take different positions ("John came and asked ENTITY." - At_John_ask;
"John wants to ask ENTITY." At_John_ask), and passive constructions in which the entity serves
as nominal passive subject ("ENTITY is asked by John." - At_John_ask) are considered.

Beyond these process motifs, there are two classes of stasis motifs. Characterizations are charac-
teristics ascribed to the entity of interest. There are several ways in which this can happen. The
most common one is via a copular verb, that has either an adjectival ("ENTITY is kind." - be_kind;
"ENTITY looks sad." - be_sad; "ENTITY is kind and honest." - be_kind, be_honest) or nominal
("ENTITY is the winner." - be_winner; "ENTITY hopes to remain president." - be_president) at-
tribute dependent. However, adjectives can also be direct dependents of the entity ("John bought a
cheap, new ENTITY." - be_cheap, be_new) to be considered characterizations. Furthermore, nom-
inal subjects of copular verbs with the entity as attribute dependent ("The winner was ENTITY."
- be_winner) and heads with the entity as appositional modifier ("My brother ENTITY won." -
be_brother) are considered characterizations.

Possessions are things that the entity of interest is said to possess. The rule set accounts for three
ways in which this can be expressed. First, when the entity serves as a possession modifier to a noun,
said noun and its conjunct dependents are considered possessions ("ENTITY‘s spouse, friends, and
parents were shocked." - H_spouse, H_friend, H_parent). Second, constructions where the entity
serves as object dependent of the preposition “of” can lead to possessions ("The breaks and wheels
of the ENTITY were old." - H_breaks, H_wheels). Third, if the entity serves as nominal subject of
“have” or one of its inflections, its direct object and nominal conjunctions thereof are considered
possessions ("ENTITY has friends and enemies." - H_friend, H_enemy). Note that “have” is a
transitive verb, but within the grammar, it is not considered an action, and consequently its objects
aren’t considered patients.

6 semgram

Value

A list with six dataframes, one for each motif class. List elements of motif classes not specified in
the motif_classes parameter will be empty.

References

Stuhler, O. (2022) "Who Does What To Whom? Making Text Parsers Work for Sociological In-
quiry." Sociological Methods and Research. <doi: 10.1177/00491241221099551>.

Stuhler, O. (2021) "What’s in a category? A new approach to Discourse Role Analysis." Poetics 88.
<doi:10.1016/j.poetic.2021.101568>.

Examples

Given data.frame with parsed sentence – as can be generated with spacyr::spacy_parse().
tokens_df = data.frame(doc_id = rep("text1", 4),

sentence_id = rep(1, 4),
token_id = 1:4,
token = c("Emil", "chased", "the", "thief"),
lemma = c("Emil", "chase", "the", "thief"),
pos = c("PROPN", "VERB", "DET", "NOUN"),
head_token_id = c(2,2,4,2),
dep_rel = c("nsubj", "ROOT", "det", "dobj")
)

Extract motifs around specific entities, here "Emil"
extract_motifs(tokens = tokens_df, entities = c("Emil"))

Extract all possible motifs
extract_motifs(tokens = tokens_df, entities = "*")

semgram semgram: R package for extracting semantic motifs from text

Description

semgram extracts semantic motifs from textual data. It builds on an entity-centered semantic gram-
mar that distinguishes six classes of motifs: actions of an entity, treatments of an entity, agents
acting upon an entity, patients acted upon by an entity, characterizations of an entity, and posses-
sions of an entity.

Index

extract_motifs, 2

semgram, 6

7

	extract_motifs
	semgram
	Index

